[Перевод] Руководство хакера по нейронным сетям. Глава 2: Машинное обучение. Обучение сети на основе метода опорных векторов (SVM)

Хабрахабр: захабренные посты

Содержание:
Глава 1: Схемы реальных значений
Часть 1:
   Введение   
      Базовый сценарий: Простой логический элемент в схеме
      Цель
         Стратегия №1: Произвольный локальный поиск

Часть 2:
         Стратегия №2: Числовой градиент

Часть 3:
         Стратегия №3: Аналитический градиент

Часть 4:
      Схемы с несколькими логическими элементами
         Обратное распространение ошибки

Часть 5:
         Шаблоны в «обратном» потоке 
      Пример "Один нейрон"

Часть 6:
      Становимся мастером обратного распространения ошибки


Глава 2: Машинное обучение
Часть 7:
      Бинарная классификация

Часть 8:
      Обучение сети на основе метода опорных векторов (SVM)



В качестве конкретного примера давайте рассмотрим SVM. SVM – это очень популярный линейный классификатор. Его функциональная форма имеет именно такой же вид, как я описывал в предыдущем разделе — f(x,y)=ax+by+c. На данном этапе, если вы видели описание SVM, вы наверняка ожидаете, что я буду определять функцию потерь SVM и погружаться в пояснения свободных переменных, геометрических понятий больших полей, ядер, двойственности и пр. Но здесь я бы хотел воспользоваться другим подходом.
посмотреть на Хабрахабр: захабренные посты